📈 mlrose-ky
  • 🏚️ Home
    • User Guide
    • Tutorial 1 - Getting Started
    • Tutorial 2 - Travelling Saleperson Problems
    • Tutorial 3 - ML Weight Optimization Problems
    • Tutorial 4 - Using Runners
  • ? About
    • Project Background
    • Main Features
    • Project Improvements and Updates
    • Installation
    • Licensing, Authors, Acknowledgements
  • 🔗 Github

↯ Randomized Optimizations

  • 🤔 Optimization Problems
    • Discrete Optimization Problem
    • Continuous Optimization Problem
    • Travelling Salesperson Optimization Problem
  • 🛹 Algorithms
    • Hill Climbing
      • References
    • Random Hill Climbing
      • References
    • Simulated Annealing
      • References
    • Genetic Algorithms
      • References
    • MIMIC
      • References
  • 📅 Decay Schedules
    • Geometric Decay
      • Formula
      • Class declaration
      • Class method
      • Example
    • Arithmetic Decay
      • Formula
      • Class declaration
      • Class method
      • Example
    • Exponential Decay
      • Formula
      • Class declaration
      • Class method
      • Example
    • Write your own custom schedule
      • Example
      • Class method
  • 🏃🏻 Fitness Functions
    • One Max
      • Formula
      • Class declaration
      • Class method
      • Example
    • Flip Flops
      • Formula
      • Class declaration
      • Class method
      • Example
    • Four Peaks
      • Formula
      • Class declaration
      • Class method
      • Example
      • References
    • Six Peaks
      • Formula
      • Class declaration
      • Class method
      • Example
      • References
    • Continuous Peaks
      • Formula
      • Class declaration
      • Class method
      • Example
    • Knapsack
      • Formula
      • Class declaration
      • Class method
      • Example
    • Travelling Salesman (TSP)
      • Formula
      • Class declaration
      • Class method
      • Example
    • N-Queens
      • Formula
      • Class declaration
      • Class method
      • Example
      • References
    • Max K Color
      • Formula
      • Class declaration
      • Class method
      • Example
    • Write your own fitness function
      • Class declaration
      • Class method
      • Example

🧠 Neural Networks

  • 📉 Weight estimation using GD/ROs
    • Neural Network
    • Linear Regression
    • Logistic Regression

🧑🏻‍💻 Tutorials

  • 1 - Getting Started
    • What is an Optimization Problem?
    • Why use Randomized Optimization?
    • Solving Optimization Problems with mlrose-ky
    • Define a Fitness Function Object
    • Define an Optimization Problem Object
    • Select and Run a Randomized Optimization Algorithm
    • Summary
    • References
  • 2 - What is a Travelling Salesman Problem?
    • What is a Travelling Salesperson Problem?
    • Solving TSPs with mlrose-ky
    • Define a Fitness Function Object
    • Define an Optimization Problem Object
    • Select and Run a Randomized Optimization Algorithm
    • Summary
  • 3 - What is a Machine Learning Weight Optimization Problem?
    • What is a Machine Learning Weight Optimization Problem?
    • Solving Machine Learning Weight Optimization Problems with mlrose-ky
      • Example: the Iris Dataset
    • Data Pre-Processing
    • Neural Networks
    • Linear and Logistic Regression Models
    • Summary
  • 4 - How to use Runners for Optimization Problems?
    • An example with RHC Runner
    • Use runners to make your own custom wrapper

📝 Examples

  • 1 - Runners in code
  • 2 - Fitness function in code
    • Import Libraries
    • Example 1: 8-Queens Using Pre-Defined Fitness Function
    • Example 2: 8-Queens Using Custom Fitness Function
    • Example 3: Travelling Salesperson Using Coordinate-Defined Fitness Function
    • Example 4: Travelling Salesperson Using Distance-Defined Fitness Function
    • Example 5: Travelling Salesperson Defining Fitness Function as Part of Optimization Problem Definition Step
    • Example 6: Fitting a Neural Network to the Iris Dataset
    • Example 7: Fitting a Logistic Regression to the Iris Data
    • Example 8: Fitting a Logistic Regression to the Iris Data using the NeuralNetwork() class
  • 3 - Using Neural Network Runners
    • Import Libraries
    • Generating sample data...
    • Preparing the experiment parameters
    • Example 1: Running the SKMLPRunner
      • (a) Clean Data
      • (b) Noisy Data
      • (c) Extra Data
  • 4 - How to use NeuralNetwork() with sklearn (EASY)
    • Import libraries
    • Loading the dataset and some pre-processing
    • Instantiating the NeuralNetwork Object
    • Validation Curves
    • Learning curve
    • Loss curve
    • Computing performance on the test set.
  • 5 - Run mlrose FASTER - parallelizable code
📈 mlrose-ky
  • 🏚️ Home

mlrose-ky: Machine Learning, Randomized Optimization and SEarch#

mlrose-ky is a Python package for applying some of the most common randomized optimization and search algorithms to a range of different optimization problems, over both discrete- and continuous-valued parameter spaces.

User Guide#

  • Project Background
  • Main Features
  • Project Improvements over mlrose-hiive.
  • Installation
  • Licensing, Authors, Acknowledgements

Tutorial 1 - Getting Started#

  • What is an Optimization Problem?
  • Why use Randomized Optimization?
  • Solving Optimization Problems with mlrose-ky
  • Define a Fitness Function Object
  • Define an Optimization Problem Object
  • Select and Run a Randomized Optimization Algorithm
  • Summary
  • References

Tutorial 2 - Travelling Saleperson Problems#

  • What is a Travelling Salesperson Problem?
  • Solving TSPs with mlrose-ky
  • Define a Fitness Function Object
  • Define an Optimization Problem Object
  • Select and Run a Randomized Optimization Algorithm
  • Summary

Tutorial 3 - ML Weight Optimization Problems#

  • What is a Machine Learning Weight Optimization Problem?
  • Solving Machine Learning Weight Optimization Problems with mlrose-ky
  • Data Pre-Processing
  • Neural Networks
  • Linear and Logistic Regression Models
  • Summary

Tutorial 4 - Using Runners#

  • An example with RHC runners
  • Use runners to make your own custom wrapper

API Reference#

  • Algorithms
  • Decay Schedules
  • Optimization Problem Types
  • Fitness Functions
  • Machine Learning Weight Optimization
Next

Built with MkDocs using a theme provided by Read the Docs.
Next »